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Section 4Section 4
Spatial EstimationSpatial Estimation
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Point estimation is used to determine what the value
of the concentration is at some point on the ground
or in a space based on linear combinations of the
surrounding data.

Point EstimationPoint Estimation

Kriging is a form of estimation, and kriging is also at
the basis of the simulation techniques used in
geostatistics.

We have a means of modeling spatial correlation and we want to apply it to estimate
values at unsampled locations.  What we mean by point estimation is that at some point
on the ground or in a space, we would like to determine the value of contaminate
concentration.
The three techniques above are all data-driven, using some pre-existing data to
interpolate to the surrounding locations.
Estimation is related to kriging, which lies at the basis of the simulation techniques used
in geostatistics.

We will look at the three techniques above, as well as kriging. Other estimation
techniques include trend surfaces and splines.
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•• Nearest neighbor polygonsNearest neighbor polygons
((aka Theissenaka Theissen or or Vornoi Vornoi polygons) polygons)

•• Local mean using surrounding dataLocal mean using surrounding data
•• Inverse distance squaredInverse distance squared

Example data-driven techniques (require some data
to exist already) that interpolate to the surrounding
locations:

We will look at the three techniques above, as well as kriging.
There are other techniques such as: trend surfaces and
splines.

Estimation TechniquesEstimation Techniques
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Estimation ExampleEstimation Example
Sample DataSample Data

•Porosity measured at
6 points.

•Want to estimate
porosity at unknown
point, x0.

This map shows the locations of 6 samples of known porosity and one point
where porosity is unknown.  We will estimate the porosity at the unknown point
using each of the three point estimation techniques.
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• Construct polygons around the samples that divide

the space into regions
• Everywhere inside of the polygon is closer to the

sample point enclosed by that polygon than to any
other sample point

Advantages:Advantages:
•Simple, fast, exact interpolator (at a point where the
value is known, it returns that exact value)

Disadvantages:Disadvantages:
•Discontinuities at polygon boundaries
•If not a lot of data and somewhat unevenly spaced,
estimation dominated by the sparsely located points

Nearest NeighborNearest Neighbor
PolygonsPolygons

The idea is to Construct polygons that divide space into regions constructed
such that every location within a polygon is closer to the sample location
within that polygon than to any other sample location.
The advantage of a simple, fast, exact interpolator is that at a point where we
know the sample value, this technique will return that exact value.
The disadvantage is that if there in not a lot of data and the data is somewhat
unevenly spaced, the points that are further away from the others will
dominate the estimation.
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  Estimated value at Unknown = .261Estimated value at Unknown = .261
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 Connect each sample
point to the neighboring
sample points to create a
series of triangles

- Draw a perpendicular
bisector through each
line.

Around the point with value .261 there is a polygon forming, and every point
within that polygon is closer to .261 than to any other sample point.

 Every point within a polygon is assigned the value of the sample point in that
polygon.

Estimated value at Unknown = .261
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•Use the mean of surrounding data as an estimate

of the value at target location

Local MeanLocal Mean
EstimationEstimation

For the example shown: mean = 1/n*SUM(data) = 0.216For the example shown: mean = 1/n*SUM(data) = 0.216

Advantages:Advantages:
• Simple, fast, few large errors (near the edges of the domain)

Disadvantages:Disadvantages:
• Not an exact interpolator (the average of the few surrounding

data points won’t necessarily return the exact value for a
known point)

• Just what are the "surrounding data"?
• It has a smoothing effect on the data values.  Any extreme

values, high or low, will get smoothed out as they are
averaged in with the surrounding values

Should each surrounding
point be weighted evenly?

Do some closer points
influence the value at the
unknown point more than
some more distant points?

Should the more distant
points be included in the
average? If so, should they
be given less weight?

far
point

close
point
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For the example shown: mean = 1/n*SUM(data) = 0.216
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•Create weights for the data values

that are inversely proportional to the
distance from the unknown location,
so the further away from the sample
point, the smaller the weight

•The weighting function is the inverse
distance raised to a power, ω
AdvantagesAdvantages::

•Simple, fast and includes distance in calculation of weights
Disadvantages:Disadvantages:

•Not an exact interpolator
•As d goes to 0, the estimator “blows up”.

Inverse DistanceInverse Distance
EstimationEstimation
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Where:

di is the distance 
zi is the sample value

The Inverse Distance technique is similar to Local Mean, but the
“surrounding” data are no longer equally weighted.

Each weight is normalized by sum of all weights and multiplied by its
corresponding sample value

The most common value of ω is 2, this is called an inverse distance squared
estimation (an option in many GIS programs).
In the equation, the denominator is the sum of all weights, the numerator is the
weight times the respective value.
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Sample # X Y Z Value
Distance from 

X0, Y0 (d)
Normalized 

Weight
Weighted 

Value

1 195 225 0.261 80.62 0.403 0.105
2 355 225 0.174 123.69 0.172 0.03
3 355 345 0.203 224.72 0.052 0.01
4 265 365 0.215 212.13 0.058 0.013
5 185 75 0.241 94.34 0.295 0.071
6 25 445 0.2 358.05 0.02 0.004

Inverse Distance Squared (ω=2)
Estimation of Value at (235.0, 155.0)

The final estimate is the sum of weighted values.

Estimate of value at Unknown = 0.233Estimate of value at Unknown = 0.233

Inverse DistanceInverse Distance
EstimationEstimation
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What attributes/statistics could be used to determine
whether or not a technique is worthwhile?

• Estimate a large number of points (100’s-1000’s) and then
take a sample at each location.  Look at how well the
estimates and actual values compare.

(Practically possible with a subset of a large data set)

• Look at the mean error as a measure of bias across all of
those locations.  Want as many over-estimates as under-
estimates so that the mean = 0 in terms of error.

• Look at the spread, or variance, of the errors.  Want it to be
minimal.

                          EvaluatingEvaluating
Estimation TechniquesEstimation Techniques

The metrics we could use to do an evaluation:
Confirmation Sampling / Jacknifing: We could estimate the values at the
locations where we actually know the values and check to see how well a
chosen technique performs (one at a time, pull each data point out of data set
and estimate that data value using the surrounding data. Compare actual
(“removed”) value to the estimate made with surrounding data), OR  imagine
estimating a large number of points (100’s-1000’s) and then, after the
estimation, taking a sample at each location.  Look at how well the estimates
and actual values compare. This is a “practical” possibility if you “hold out” a
subset of a large data set when performing the estimation.
Mean Error: Look at mean error as a measure of bias across all of those
locations.  You want the bias to show consistent over- or under-estimation
across all locations, so that the mean error = 0.

Spread/variance of Errors: Look at how widely spread the errors are.  You
want the variance to be minimal.
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Precise
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Accurate: mean error = 0Accurate: mean error = 0
Imprecise: wide distributionImprecise: wide distribution

Inaccurate: bias to the low sideInaccurate: bias to the low side
Precise: narrow rangePrecise: narrow range

Inaccurate: high side biasInaccurate: high side bias
Imprecise: wide distributionImprecise: wide distribution

Accurate: mean error = 0Accurate: mean error = 0
Precise: range is narrowPrecise: range is narrow

Evaluating Estimation TechniquesEvaluating Estimation Techniques

Arrow is at actual value, curve is histogram of all sample values

The Inaccurate/Precise model (lower left) is probably the worst case of all
because though there is a precise, narrow range that lets you think you have
small error, there is a strong bias to the low side. It suggests that the actual
value is outside of the model.
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large variance

true
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optimal

true
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Scatter  PlotsScatter  Plots
Evaluating Estimation TechniquesEvaluating Estimation Techniques

OptimalOptimal: The distribution is centered on
the 45 degree line (accurate, unbiased)
with a small spread.

•Build a model of the concentration at each point, the estimate.
•Take a sample and see how well the estimate and true values

correlate.

Large VarianceLarge Variance: The distribution is
accurate and unbiased, but the
estimates are more variable causing a
wider spread in the distribution
(imprecise).
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low biaslow bias
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Scatter  PlotsScatter  Plots
Evaluating Estimation TechniquesEvaluating Estimation Techniques

High biasHigh bias: overestimates the true value

Low biasLow bias: underestimates the true value

The distribution is precise but biased.

HeteroscedasticHeteroscedastic: The variance changes
as a function of the value.  So as the
values increase, quality of the fit about
the 45 degree line deteriorates.

ConditionalConditional: A small subsection
appears to be optimal, but the low

values tend to be overestimated and
high values tend to be underestimated.

conditional biasconditional bias 

true

es
tim
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e
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JacknifingJacknifing:
• One at a time, pull each data point out of data set

and estimate that data value using the
surrounding data

• Compare actual (“removed”) value and estimate
made with surrounding data on a scatter plot

JacknifingJacknifing
Evaluating Estimation TechniquesEvaluating Estimation Techniques
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Kriging is an estimator that uses a weighted linear combination of
surrounding data to produce unbiased, minimum variance
estimates.

Kriging weights are not based on Euclidean distance, but use the
geometry defined by the variograms.

KrigingKriging

∑
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=
n

1i
iiz?est

OrdinaryOrdinary Kriging Kriging (OK):(OK):  Allows for local re-
estimation of the global mean.  The
estimate is the sum of the product of the
weights and the z values.
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SimpleSimple Kriging Kriging (SK): (SK):    Enforces the
global mean on to each estimate.  Sums
the weighted residual of the estimate
from the global mean and adds that
sum to the global mean.

Kriging is the basis of everything we do in geostatistical simulation.
Ordinary Kriging (OK) is similar to inverse distance squared. We have an
estimate that is the sum of the product of the weights and the z values.  The
difference in this estimation is that the weights are not based on Euclidean
distance but on the geometry defined by the variograms, generating a single
best estimate at a location.
Simple Kriging (SK) uses residuals off the global mean to estimate residual of
the global mean.  Subtract the global mean from the estimate and multiply that
by the weight, then add the sum of that to the global mean. This process is
more precise if conditions present second order stationarity.

Theoretically, people like SK, but in practice OK is the way to go.
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Best Linear Unbiased Estimator (B.L.U.E.)

KrigingKriging as a  as a BLUEBLUE

Does Ordinary Kriging (OK) fit the requirements
of a B.L.U.E.?

Tries to minimize the variance of the
residuals and make the distribution
precise
Uses a weighted linear combination of
the surrounding data
Attempts to make the mean residual
equal to zero

Best:Best:

Linear:Linear:

Unbiased:Unbiased:
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ω  = C-1*D

Calculation ofCalculation of Kriging Kriging Weights Weights

Vector of
covariances
between each
point in the
search
neighborhood
and the location
being estimated

Local
covariance
matrix that
describes
covariance
between all
samples in the
local search
neighborhood D

r
ωr
{ 3214444444 34444444 21
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To solve for vector of weights use matrix algebra:
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Matrix ElementsMatrix Elements

Add an extra row and column
to assure unbiasedness

Lagrange parameter,
from adding a row
for unbiasedness

C61 is the
covariance
between
points 6
and 1

C11 is the covariance at zero separation, the sill value

The matrix of the covariances of all the sample points in the search neighborhood
operates to take into account data redundancy.

Two points that are close to each other in one direction and have a high covariance
are redundant, may want to weight them together as much as a single point in the
opposite direction the same distance away.

After inverting C, which rescales the covariances, a large covariance becomes a small
weight.
So the matrices take care of the clustering of the data points and the distance between
unknown point and sample points in variogram space, not just Euclidean space.  Put
those two together to get the kriging weights.
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• There is no guarantee of a unique solution to the matrix system.

To ensure that there is only one unique solution, the system
must be positive definite

• For estimates that are weighted linear combinations of other
values, the variance about those estimates must be greater than
or equal to zero

• Positive definite condition can be achieved by modeling
variograms with positive definite functions, as long as one of
the standard models is used (which are positive definite
functions) the covariances will create a positive definite set of
matrices

Covariance MatrixCovariance Matrix

SEAN: In my notes here it says to add a subsection on
what we need to get started, data from site expected to be
output using GIS software to put in correct format,
mapping of data points right away… Is this a new slide or
is it a new section??
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Guarantee that the variance of any random
variable formed by a weighted linear
combination of other random variables will be
positive.

(Isaacs and Srivastava, 1989)
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We want the mean, or expectation, of the errors to equal zero.

∑
=

−=
n

1i
0ii0 )Z(x)Z(x?)E(x

• Realize that the mean is stationary, so both the estimate
and the actual value have the same mean.

• If the average error is set to zero, then:

∑
=

=
n

1i
i 1.0?

UnbiasednessUnbiasedness

• Define error as: the estimated value – actual value

Sean - please note the intervening steps here...
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• Lagrange parameter, µ, solves the problem of

n+1 equations and only n unknowns created
by the unbiasedness constraint

• Lagrange parameter is essentially another
unknown
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 −ωµ ∑
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Lagrange Lagrange ParameterParameter

In the Covariance matrix, we had six equations and six unknowns, then added the extra
row and column for the unbiasedness constraint, which created seven equations and six
unknowns.  In order to fix that, use the Lagrange parameter.
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Distances are not in Euclidian space, but are relative to variogram
range.

•Can provide anisotropy and weights of zero, if a point is really
beyond the range of the variogram it’s going to get a zero
weight

Covariances in      act like inverse distance weights (two points
close together have a high covariance, as the distance increases
the covariance approaches zero).

•However, the weight as a function of distance is not limited to
simple powers, it can fit with more complex variogram models.

D
r

Covariances in C act to decluster the data
•C-1 is adjusting the weights in      for data redundancyD

r

The kriged weights leave more flexibility, can fit with more complex variogram models.
Declustering of data is a function that other techniques do not provide.
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For the example problem, the normal-score variogram
model is spherical, with a range of 125.0 (N-S) and
100.0 (E-W) and a nugget of 0.0

Kriging Kriging ResultsResults

Location
Distance from 

X0

Kriging Weight 
(radii = range)

1 80.6 0.541
2 123.7 0
3 224.7 0
4 212.1 0
5 94.3 0.459
6 358.1 0

Estimate of value at xEstimate of value at x00 = 0.250 = 0.250

Note that only
points 1 and 5
fall within the
search ellipse

Note that only points 1 and 5 fall within the search ellipse.

The weights get multiplied by the value of the two points and the kriging
estimate is the sum of those.

Kriging also provides an estimate of the error at a location; no other estimation
technique does this.

Estimator results:

Nearest Neighbor Polygon : 0.261

Local Mean: 0.216

Inverse Distance: 0.233

Kriging: 0.250
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• Kriging is unique among spatial estimation techniques in

attempting to minimize errors, making the distribution tight.
• Concisely, it is the variance of the errors that is minimized

( )∑
=

−=σ
n

1i

2
i

2
e ee

n
1

Error VarianceError Variance

Where each error, ei = the estimate - the true value 
            and    is the mean errore

In this equation, we are looking at the difference between the error at any individual
location and the mean error, squared.
Sean - my notes say you will make this smoother and add detail.
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Short Version:Short Version:  The estimate of error variance is the total

variance minus the weighted sum of
covariances in    plus the Lagrange
parameter

( ) µC?
n
1sŝ

n

1i
i0i

2
Data

2
e +−= ∑

=

in matrix
form: ( )D?sŝ 2

Data
2
e

rr ⋅−=

where      is the estimateeσ̂

Long Version:Long Version:  Derive a model of the error variance and
minimize the modeled variance by setting
partial derivative for each weighted
covariance between datum and estimation
location to zero.

Error VarianceError Variance

D
r

( )D?s 2
Data

rr ⋅− expresses the fact that error variance in kriging is not
a function of data values but rather of sample configuration - the proximity of other
values.
For example: think of a simple system with a single data point in the search
neighborhood, and we have a normalized covariance such that at zero separation
distance the covariance is equal to 1.  The variance of the data will be zero (one
data point), the sum of the weighted covariances is 1, and µ is going to be zero.
What we end up with in that system is that the estimate of the variances will be
equal to zero.
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•Error variance is also called kriging variance or

estimation variance
•Error variance is not a function of data values but only

of sample configuration
•Error Variance is equal to zero at data location
•Like the kriging system, distribution of errors is 

non-parametric

Error VarianceError Variance

(although a gaussian distribution is often assumed for errors)

To minimize error variance, look only at the variance of the data and at the
kriging weights.

It really comes down to the weights, which are a function of distance specified
as the variograms and the variance of the data.
To locate additional samples in the area of greatest kriging variance, put the
samples as far away as possible from any available data.

( ) µC?
n
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sŝ
n

1i
i0i

2
Data

2
e +−= ∑

=
Recall:
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Kriging Kriging VarianceVariance

ExampleExample
Kriged map of elevation

of aquifer bottom Kriging variance map
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Kriging variance is not a function of data values, only of the proximity of other
data points.  It can be used as a means for locating additional samples - place
the samples in the area of greatest kriging variance, as far as possible from any
available data.
In this example, a lot of the sampling is focused on one area at the source of a
leak, therefore there is low variance (blue zones). Additional samples in the
area of high variance wouldn’t give any information because they are outside
of the area of regulatory concern. Need a criterium that is tied to the problem,
not just to the spatial extent of the data.
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10 ft Sample R is
120 ppmSample L

is 94 ppm

100 ppm

Since Sample R and Sample L are very close to each other, there
will be a small error variance, but if the regulatory threshold is 100
ppm, then R fails and L passes.

Kriging Kriging VarianceVariance
ExampleExample

Example: Two samples, 10 feet away from each other in a very large domain.  Sample R
value is 120 ppm, Sample L is 94 ppm. There are some other samples in the area.  Since
R and L are very close to each other, there will be a small error variance, but if the
regulatory threshold is 100 ppm, then R fails and L passes.  There is significant
uncertianty as to where that 100 ppm line actually falls.  So even though the kriging
variance tells us that it’s a very small error, if we’re interested in sampling based on an
action level that falls between these samples, the uncertainty directs us to target our
sampling in this location.

Kriging variance is not a function of the data values at all, only of the proximity of other
data points.

At any location, to determine if we want to take another sample:

• Get the best estimate from kriging
• Get the variability at the same location from the kriging variance map, we

assume the shape is Gaussian.
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•Indicator kriging is basically kriging on an indicator (binary)
transform of the of the data.

•Transforming data to zeros and ones using a threshold.

•Values less than or equal to the threshold are given a value of 1,
and values above that are given 0’s.

Sample R (120 ppm)
indicator=0indicator=0

Sample L (94 ppm)
indicator=1indicator=1

100
ppm

10 ft

IndicatorIndicator Kriging Kriging

Indicator Kriging

• Transform data to zeros and ones using a threshold.

• Krige data using indicator variogram  (Kriging the indicators requires the
variogram to be modeled in the indicator space)

• Resulting map shows p(exceed) threshold (all values in [0,1])
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Sean - Make Map

Map of Indicator Map of Indicator KrigedKriged
Probability of Probability of ExceedenceExceedence
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Practical AssessmentPractical Assessment

of Modelof Model

Goal:Goal:  try to test technique under conditions as close
as possible to true estimation conditions 

Numerically (without doing samples), there are two
possible techniques:

••  Cross-ValidationCross-Validation
•• Jackknifing Jackknifing

“True estimation conditions” refers to the regulator that will come in and sample a spot
that is said to be clean to see if it is.
Cross-validation and Jackknifing are two numerical techniques that we can perform to
test if our model demonstrates the contaminant distribution at all points without going
out into the field for more samples.
Residuals can show if you are imbalanced between high and low errors.
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Cross-validation:Cross-validation: Pull each datum out of the model individually

and use the surrounding data to re-estimate
the removed datum.  Then compare the
estimate to the actual value.

Jackknifing:Jackknifing: Hold back some of original data and use the
remaining data to estimate those locations.
Then compare the real values with the
estimates.

Both techniques:Both techniques: Examine a scatterplot of the actual values vs.
estimates.  Map the residuals to make sure
they are  not always over estimated in one
region and underestimated in another.

Practical AssessmentPractical Assessment
of Modelof Model

Cross-validation: If we have a lot of data points, we can go around one at a time and
pull out and re-estimate each point and see how close the estimate is.  Afterwards we can
make a scatterplot and plot actual vs. estimate to see how close we are, we can also map
those residuals to make sure we are not always over estimating in one region and
underestimating in another.
Jackknifing: If we had 1000 samples, we could estimate the concentration across the site
using only 800 of the samples, then we could add in those 200 additional locations where
we held the data back and compare the real values with the estimates.


